Homework 1 Algebraic Topology

Joshua Ruiter

February 12, 2018

Note: When unspecified, a map is assumed to be continuous.

Lemma 0.1 (not assigned, just stated for clarity). Composition of continuous maps is continuous.

Definition 0.1. Let X, Y be spaces and $f: X \to Y$ be a continuous map. Consider the space $(X \times I) \sqcup Y$, and define an equivalence relation $(x, 1) \sim f(x)$. Then we define the **mapping cylinder** of f, denoted M_f , to be $(X \times I) \sqcup Y / \sim$.

Definition 0.2. Let X be a space and \sim an equivalence relation on X. The **quotient** space X/\sim is the set of equivalence classes,

$$(X/\sim) = \{[x] : x \in X\}$$

Note that $\pi: X \to X/\sim$ given by $x \mapsto [x]$ is surjective. We define a set $U \subset X/\sim$ to be open if $\pi^{-1}(U)$ is open in X. This gives rise to a topology on X/\sim , called the **quotient topology**.

Definition 0.3. Let $\{X_i\}_{i\in I}$ be a family of topological spaces. Let X be the cartesian set product $\prod_{i\in I} X_i$. We define the **product topology** on X by defining open sets to be sets of the form $\prod_{i\in I} U_i$ where $U_i \subset X_i$ is open and $U_i \neq X_i$ for only finitely many i.

Definition 0.4. A CW comlex or cell complex is a space built up from ataching n-cells to n-1 cells. More precisely, begin with a set X^0 of points (0-cells). Inductively, form the n-skeleton X^n from X^{n-1} by attaching n-cells e^n_{α} via maps $\phi_{\alpha}: S^{n-1} \to X^{n-1}$. That is, X^n is the space

$$X^n = \left(X^{n-1} \bigsqcup_{\alpha} D_{\alpha}^n\right) / \sim$$

where $x \sim \phi_{\alpha}(x)$ for $x \in \partial D_{\alpha}^n \cong S^{n-1}$. That is,

$$X^n = X^{n-1} \bigsqcup_{\alpha} e_{\alpha}^n$$

If this process terminates for some n, then $X = X^n$ has the expected quotient topology. If the process does not terminate, then $A \subset X$ is open iff $A \cap X^n$ is open in X^n for every n. (This is called the **weak topology**.)

Definition 0.5. Let C, D be categories, and let $F, G : C \to D$ be covariant functors. A **natural transformation** $\eta : F \to G$ is assigns each object $X \in \text{Ob}(C)$ to a morphism $\eta_X : F(X) \to G(X)$ such that for every morphism $f : X \to Y$, we have $\eta_Y \circ F(f) = G(f) \circ \eta_X$. That is, the diagram commutes:

$$F(X) \xrightarrow{F(f)} F(Y)$$

$$\eta_X \downarrow \qquad \qquad \eta_Y \downarrow$$

$$G(X) \xrightarrow{G(f)} G(Y)$$

Definition 0.6. Let X be a topological space and $A \subset X$. The pair (X, A) has the **homotopy extension property** if for every homotopy $f_t : A \to Y$ and every map $F_0 : X \to Y$ such that $F_0|_A = f_0$, there exists a homotopy $F_t : X \to Y$ such that $F_t|_A = f_t$ for all t.

(Exercise 2)

We construct an explicit deformation retraction of $\mathbb{R}^n \setminus \{0\}$ onto $S^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}$. Define $f_t : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n \setminus \{0\}$ by

$$f_t(x) = (1-t)x + t\frac{x}{|x|}$$

Then $f_0(x) = x$ so $f_0 = \operatorname{Id}_{\mathbb{R}^n \setminus \{0\}}$. Also, $f_1(x) = \frac{x}{|x|} \in S^{n-1}$, which is surjective onto the circle, so $f_1(\mathbb{R}^{n-1} \setminus \{0\}) = S^{n-1}$. Finally, $f_t|_{S^{n-1}} = \operatorname{Id}_{S^{n-1}}$ because if $x \in S^{n-1}$, then |x| = 1 so $f_t(x) = (1-t)x + tx = x$. Thus f_t is the required deformation retraction.

The next two lemmas say that we can right- and left-compose with homotopic maps to get homotopic maps. These provide a very clean proof that the composition of homotopy equivalences is a homotopy equivalence.

Lemma 0.2 (for Exercise 3a). Let $f_0, f_1 : X \to Y$ be homotopic and $g : Y \to Z$. Then $gf_0 \simeq gf_1$.

Proof. Let $f_t: X \to Y$ be a homotopy from f_0 to f_1 . Then $gf_t: X \to Y$ is a homotopy from gf_0 to gf_1 .

Lemma 0.3 (for Exercise 3a). Let $f_0, f_1 : X \to Y$ be homotopic and $h : Z \to X$. Then $f_0h \simeq f_1h$.

Proof. Let $f_t: X \to Y$ be a homotopy from f_0 to f_1 . Then $f_t h$ is a homotopy from $f_0 h$ to $f_1 h$.

Proposition 0.4 (Exercise 3a). A composition of homotopy equivalences is a homotopy equivalence. Thus homotopy equivalence is an equivalence relation.

Proof. Let $f_1: X \to Y$ and $f_2: Y \to Z$ be homotopy equivalences. We will show that the composition f_2f_1 is a homotopy equivalence.

Since f_1, f_2 are homotopy equivalences, there exist maps $g_1: Y \to X$ and $g_2: Z \to Y$ such that $f_1g_1 \simeq \operatorname{Id}_Y, g_1f_1 \simeq \operatorname{Id}_X, f_2g_2 \simeq \operatorname{Id}_Z$, and $g_2f_2 \simeq \operatorname{Id}_Y$. Then since $f_1g_1 \simeq \operatorname{Id}_Y$, by the Lemma 0.2 above, $f_2f_1g_1 \simeq f_2\operatorname{Id}_Y = f_2$. Then by Lemma 0.3, $f_2f_1g_1g_2 \simeq f_2g_2 \simeq \operatorname{Id}_Z$. Similarly,

$$g_2 f_2 \simeq \operatorname{Id}_Y \implies g_1 g_2 f_2 \simeq g_1 \operatorname{Id}_Y = g_1 \implies g_1 g_2 f_2 f_1 \simeq g_1 f_1 \simeq \operatorname{Id}_X$$

Thus we have $(f_2f_1)(g_1g_2) \simeq \operatorname{Id}_Z$ and $(g_1g_2)(f_2f_1) \simeq \operatorname{Id}_X$. Thus g_1g_2 is the required homotopy inverse for f_1f_2 , hence f_1f_2 is a homotopy equivalence between X and Z. This establishes transitivity of homotopy equivalence.

Reflexivity and symmetric are quick to show. (Reflexivity) Let X be a space. Then Id_X is a homotopy equivalence from X to itself, since there exists a map, namely Id_X , such that $\mathrm{Id}_X \mathrm{Id}_X \simeq \mathrm{Id}_X$. Thus $X \simeq X$. (Symmetry) Let $X \simeq Y$ via f. Then the map $g: Y \to X$ where $fg \simeq \mathrm{Id}_Y$ and $gf \simeq \mathrm{Id}_X$ is a homotopy equivalence from Y to X, so $Y \simeq X$.

Proposition 0.5 (Exercise 3b). Let X, Y be spaces. The \simeq is an equivalence relation on maps $f: X \to Y$.

Proof. Let $f, g, h: X \to Y$ be continuous. Then $f \simeq f$ by the homotopy $f_t(x) = f(x)$. If $f \simeq g$ via a homotopy f_t , then $g \simeq f$ via f_{1-t} . Finally, suppose $f \simeq g$ via f_t and $g \simeq h$ via g_t . Then define

$$\phi_t(x) = \begin{cases} f_{2t}(x) & 0 \le t \le 1/2\\ g_{2t-1}(x) & 1/2 \le t \le 1 \end{cases}$$

Note that $\phi_{1/2}(x)$ is well defined because $f_1(x) = g(x) = g_0(x)$. Also note that ϕ is continuous by the Gluing Lemma. Then ϕ is a homotopy between f and h, so $f \simeq h$.

Proposition 0.6 (Exercise 3c). Let $f_0, f_1 : X \to Y$ such that f_0 is a homotopy equivalence and $f_0 \simeq f_1$. Then f_1 is a homotopy equivalence.

Proof. Since f_0 is a homotopy equivalence, there exists a map $g: Y \to X$ such that $f_0g \simeq \operatorname{Id}_Y$ and $gf_0 \simeq \operatorname{Id}_X$. Then since $f_0 \simeq f_1$, by Lemma 0.2, $gf_0 \simeq gf_1$ and since \simeq is transitive, $gf_0 \simeq \operatorname{Id}_X \simeq gf_1$. Likewise, since $f_0 \simeq f_1$ by Lemma 0.3 $f_0g \simeq f_1g$ so $f_1g \simeq \operatorname{Id}_Y$. Thus f_1 is also a homotopy equivalence from X to Y via the same map g.

Proposition 0.7 (Exercise 4). If X deformation retracts to A in the weak sense, then the inclusion $\iota: A \hookrightarrow X$ is a homotopy equivalence.

Proof. Let $f_t: X \to X$ be a weak deformation retraction, that is, f_t is a homotopy such that $f_0 = \operatorname{Id}_X$, $f_1(X) \subset A$, and $f_t(A) \subset A$. Then we have that $f_1\iota \simeq \operatorname{Id}_A$ via the homotopy $\widetilde{f}_t = f_t|_A = f_t\iota : A \to A$, since $\widetilde{f}_0 = f_0|_A = \operatorname{Id}_X|_A = \operatorname{Id}_A$, and $\widetilde{f}_1 = f_1|_A = f_1\iota$. (Note that $\widetilde{f}_t(A) \subset A$ because $f_t(A) \subset A$.) We also have that $\iota f_1 \simeq \operatorname{Id}_X$, via the homotopy $f_t: X \to X$, since $f_0 = \operatorname{Id}_X$ and $f_1 = \iota f_1$ since $f_1(X) \subset A$. Thus f_1 is a homotopy inverse for ι , so ι is a homotopy equivalence.

Proposition 0.8 (Exercise 5, not assigned, but needed for Exercise 6). If a space X deformation retracts to a point $x \in X$, then for each neighborhood U of x in X there exists a neighborhood $V \subset U$ of x such that the inclusion map $V \hookrightarrow U$ is nullhomotopic.

Lemma 0.9 (for Exercise 6a). Let X be a space and $A \subset X$. If the inclusion $\iota_A : A \hookrightarrow X$ is nullhomotopic, then A lies in a single path component of X.

Proof. Let $f_t: A \to X$ be a homotopy with $f_0 = \iota_A$ and $f_1(A) = x_0$. Let $y \in A$. Then define $\gamma: I \to X$ by $\gamma(t) = f_t(y)$. We have $\gamma(0) = y$ and $\gamma(1) = x_0$, so y is contained in the path component of x_0 in X. Since y was arbitrary, all of A lies in the path component of x_0 . \square

Lemma 0.10 (for Exercise 6). Let X be a space, and let $A \subset B \subset X$, and suppose that there is a deformation retraction $f_t: X \to X$ of X onto B and a deformation retraction $g_t: B \to B$ of B onto A. Then there is a deformation retraction of X onto A.

Proof. Let $f_t: X \to X$ and $g_t: B \to B$ be deformation retractions, i.e.

$$f_0 = \operatorname{Id}_X$$
 $f_1(X) = B$ $f_t|_B = \operatorname{Id}_B$
 $g_0 = \operatorname{Id}_B$ $g_1(B) = A$ $g_t|_A = \operatorname{Id}_A$

Define $h_t: X \to X$ by

$$h_t(x) = \begin{cases} f_{2t}(x) & 0 \le t \le 1/2\\ g_{2t-1} \circ f_1(x) & 1/2 \le t \le 1 \end{cases}$$

For t=1/2, the two alternate definitions agree, because $f_{2(1/2)}=f_1$ and $g_{2(1/2)-1}\circ f_1=g_0\circ f_1=\operatorname{Id}_B\circ f_1=f_1$. Hence h is well-defined and continuous by the Gluing Lemma. Furthermore, h is a deformation retraction of X onto A, as $h_0=f_0=\operatorname{Id}_X$, and $h_1(X)=g_1\circ f_1(X)=g_1(B)=A$ and

$$h_t|_A = \begin{cases} f_{2t}|_A & 0 \le t \le 1/2\\ (g_{2t-1} \circ f_1)|_A & 0 \le t \le 1/2 \end{cases}$$

$$= \begin{cases} \operatorname{Id}_A & 0 \le t \le 1/2\\ g_{2t-1} \circ \operatorname{Id}_A & 0 \le t \le 1/2 \end{cases}$$

$$= \begin{cases} \operatorname{Id}_A & 0 \le t \le 1/2\\ \operatorname{Id}_A & 0 \le t \le 1/2 \end{cases}$$

$$= \operatorname{Id}_A$$

Proposition 0.11 (Exercise 6a). Let X be the subspace of \mathbb{R}^2 consisting of the horizontal segment $[0,1] \times \{0\}$ together with all the vertical segments $\{r\} \times [0,1-r]$ for $r \in \mathbb{Q} \cap [0,1]$. Then X deformation retracts to any point in the segment $[0,1] \times \{0\}$ but not to any other point.

Proof. First we show that X deformation retracts onto $A = [0, 1] \times \{0\}$. Geometrically, we retract each of the line segments $\{r\} \times [0, 1 - r]$ straight down toward the x-axis. More formally, define $f_t : X \to X$ by $f_t(x, y) = (x, (1 - t)y)$. Note that this does map into X. Also, $f_0(x, y) = (x, y)$ and $f_1(x, y) = (x, 0)$ and $f_t|_A = \operatorname{Id}_A$, so f_t is a deformation retraction.

Now we show that A retracts onto any point inside itself. Let $(x_0, 0) \in [0, 1] \times \{0\}$. Define $g_t : A \to A$ by $g_t(x, 0) = ((1 - t)x + tx_0, 0)$. Then $g_0(x, 0) = (x, 0)$ and $g_1(x, 0) = (x_0, 0)$ so g_t is a deformation retraction of A onto $(x_0, 0)$. Thus X deformation retracts onto $(x_0, 0)$.

Now we show that X does not deformation retract onto any other point. Suppose X retracts onto (x, y) with $y \neq 0$. Then the ball centered at (x, y) with radius $\frac{1}{2}y$ does not intersect the x-axis. Let U be the intersection of this ball with X. Then U is a disjoint union of vertical (open) line segments, each of which constitutes a separate path component. In particular, the path component containing (x, y) is $U \cap (\{x\} \times [0, 1-x])$.

By Exercise 5, there is a neigborhood $V \subset U$ of (x,y) such that the inclusion map $V \hookrightarrow U$ is nullhomotopic, so by the above lemma, V lies in a single path component of U. Since $(x,y) \in V$, we have $V \subset U \cap (\{(x\} \times [0,1-x])$. Since V is an open neighborhood of (x,y), for some $\epsilon > 0$ we must have $B((x,y),\epsilon) \cap X \subset V$. Because the rationals are dense, for any $\epsilon > 0$, there is a rational $r \neq x$ such that $0 < r < \epsilon$, so $B((x,y),\epsilon) \cap (\{r\} \times [0,1-r]) \neq \emptyset$. Thus V must intersect another path component of U nontrivially. This is a contradiction, so we conclude that X does not deformation retract onto any point off of the x-axis. \square

(I broke Exercise 6b into two separate propositions because showing that Y is contractible became a very very long proof.)

Proposition 0.12 (Exercise 6b, part one). Let Y be the subspace of \mathbb{R}^2 that is the union of infinitely many copies of X (see picture in Hatcher on page 18). The Y is contractible.

Proof. Let Z be the zigzag subspace, let $y \in Y$. We define a path $\gamma_y : [0, \infty) \to Y$ by setting $\gamma_y(t)$ to be the point in Y by "flowing" the point y along Y with velocity one toward the right. So for $y \in Z$, $\gamma_t(y)$ is the point in Z to the right of y that has distance t from y, in the sense of traveling only in Y. For a point y in one of the "comb hairs" of length a, for $t \leq a$, $\gamma_t(y)$ is the point on the same comb hair at distance a - t from the base of that comb hair. At time a, we have $\gamma_a(y) \in Z$, and after that we already defined what $\gamma_t(y)$ does. Then we define $h_t : Y \to Y$ by $h_t(y) = \gamma_y(t)$. We claim that $h_1 : Y \to Z$ is a homotopy equivalence. (Note that h_1 does in fact map into Z, since no point in Y is more than distance one from Z, while flowing along Y.)

We need to show several things: that h_1 is continuous, and that there is a continuous function $g: Z \to Y$ such that $g \circ h_1 \simeq \operatorname{Id}_Y$ and $h_1 \circ g \simeq \operatorname{Id}_Z$. First, we show that h_1 is continuous. It is sufficient to show that the preimage of an open "interval" of Z is open in Y.

(Note: Y has the subspace topology from \mathbb{R}^2). By an interval of Z, we mean the intersection Z with an open ball in \mathbb{R}^2 . First consider a single point $y \in Z$. The preimage $h_1^{-1}(y)$ is the intersection of a vertical line in \mathbb{R}^2 with Y. Thus, if U is an open interval in Z, the preimage is the union of an interval of vertical lines in \mathbb{R}^2 , that is, $h_1^{-1}(U)$ is the intersection of Y with an infinite open rectangle from \mathbb{R}^2 . Thus $h_1^{-1}(U)$ is open, so h_1 is continuous.

Now we need a homotopy inverse for h_1 . Define $g_t: Z \to Y$ by sending the point z to the point on Z at distance t (flowing along Y) to the left of y. Then g_t is continuous, since the preimage of any U is a "shift" of U by flowing it to the right along Z. (The preimage of any point in one of the comb hairs is empty.) We will show that g_1 is a homotopy inverse for h_1 . We see immediately that $h_1 \circ g_1 = \operatorname{Id}_Z \simeq \operatorname{Id}_Z$, so all that remains is to show $g_1 \circ h_1 \simeq \operatorname{Id}_Y$.

First, we claim that $h_1 \simeq \operatorname{Id}_Y$ via h_t for $t \in [0,1]$. We have $h_0 = \operatorname{Id}_Y$ and at t = 1 we have h_1 , so we need to show that the map $(y,t) \mapsto h_t(y)$ is continuous. Consider a single point $y_0 \in Y$. The preimage of y_0 a the "slice" of the form

$$\{(y,t) \in Y \times [0,1] : h_t(y) = y_0\} = \bigcup_{t \in [0,1]} (h_t^{-1}(y_0)) \times \{t\}$$

For an open set in Y, the preimage is a union over such slices, which is open in the product topology on $Y \times [0,1]$, so $(y,t) \mapsto h_t(y)$ is continuous. Thus $h_1 \simeq \operatorname{Id}_Y$. Now we claim that $g_1 \circ h_1 \simeq h_1$. Define $f_t : Y \to Y$ by $f_t = g_t \circ h_1$. Then

$$f_0 = g_0 \circ h_1 = \operatorname{Id}_Z \circ h_1 = h_1$$

$$f_1 = g_1 \circ h_1$$

and f_t is continuous since g_t and h_1 are continuous. Thus $g_1 \circ h_1 \simeq h_1$. By transitivity, $g_1 \circ h_1 \simeq \operatorname{Id}_Y$, so g_1 is a homotopy inverse for h_1 , so Y is homotopic to Z. It is not hard to see that Z is contractible, since it is homeomorphic to \mathbb{R} . Thus Y is contractible. \square

Proposition 0.13 (Exercise 6b, part two). Let Y be the subspace of \mathbb{R}^2 that is the union of infinitely many copies of X (see picture in Hatcher on page 18). The Y does not deformation retract onto any point.

Proof. First, suppose x is a point in the "comb" part of some copy of X. By the same argument as in part (a), there is a ball B of sufficiently small radius so that $B \cap Y$ is disconnected, and then if Y deformation retracts to x then by Exercise 5 we get a neighborhood $V \subset B \cap Y$ that is path connected, which is a contradiction.

Now suppose that z is a point in the zigzag line Z part of Y. There is a ball B of sufficiently small radius so that any sub-neighborhood of $B \cap Y$ is disconnected, because the "comb fibers" parallel to the segment where z lives are arbitrarily close to z (this still holds if z is a "corner" of Z). Then by the argument above, if Y deformation retracts onto z then there is a path connected neighborhood of z, which is a contradiction. Thus Y does not deformation retract onto any point.

Proposition 0.14 (Exercise 6c). Let Y be the space described in part (b) and let Z be the zigzag subspace of Y homeomorphic to \mathbb{R} . (See picture on page 18 of Hatcher.) There is a deformation retraction in the weak sense of Y onto Z, but no true deformation retraction.

Proof. To get a deformation retraction in the weak sense of Y onto Z, use the map $h_t: Y \to Y$ in the proof in part (b) that Y is contractible. We have $h_0 = \operatorname{Id}_Y$ and $h_t(Y) \subset Z$ and $h_t(Z) \subset Z$ for all t, and we showed that $(y,t) \mapsto h_t(y)$ is continuous, so h_t is a deformation retraction in the weak sense of Y onto Z.

Now we show that there is no deformation retraction of Y onto Z. First, note that since Z is homeomorphic to \mathbb{R} , Z does deformation retract onto a point. If there were a deformation retraction of Y onto Z, then that retraction followed by a deformation retraction of Z to a point would give a deformation retraction of Y to a point, which is impossible by part (b).

As usual, in the next few propositions, the word "map" means continuous function. Keep in mind that the composition of continuous functions is continuous.

Proposition 0.15 (Exercise 10, part one). A space X is contractible if and only if for every space Y and every map $f: X \to Y$, f is nullhomotopic.

Proof. Suppose that for every space Y, every map $f: X \to Y$ is nullhomotopic. In particular, we can choose Y = X, and $f = \operatorname{Id}_X$. By hypothesis, f is nullhomotopic, so X is contractible.

Now suppose that X is contractible. Let Y be a space and $f: X \to Y$. Let $h_t: X \to X$ be a homotopy with $h_0 = \operatorname{Id}_X$ and $h_1(x) = x_0$. Then $\tilde{h}_t = fh_t: X \to Y$ satisfies $\tilde{h}_0 = f \operatorname{Id}_X = f$ and $\tilde{h}_1(x) = fh_1(x) = f(x_0)$, which is constant. Thus \tilde{h}_t is a homotopy from f to a constant map, so f is nullhomotopic.

Proposition 0.16 (Exercise 10, part one). A space X is contractible if and only if for every space Y and every map $f: Y \to X$, f is nullhomotopic.

Proof. Suppose that for every space Y, every map $f: Y \to X$ is nullhomotopic. In particular, we can choose Y = X and $f = \mathrm{Id}_X$, so Id_X is nullhomotopic, so X is contractible.

Now suppose that X is contractible. Let Y be a space and $f: Y \to X$ a map. Let $h_t: X \to X$ be a homotopy with $h_0 = \operatorname{Id}_X$ and $h_1(x) = x_0$. Then $h_t = h_t f: Y \to X$ satisfies $h_0 = \operatorname{Id}_X f = f$ and $h_1(x) = h_1 f(x) = x_0$, which is constant. Thus $h_t = h_t f: Y \to X$ to a constant map, so f is nullhomotopic.

The next lemma is quite trivial, but removes any doubt.

Lemma 0.17 (for Exercise 13). Let $f: X \to Y$ and $g: Y \to Z$ be functions, and let $A \subset X$. Then

$$(g \circ f)|_A = g \circ (f|_A)$$

Proof. Let $\iota_A: A \hookrightarrow X$ be the inclusion. Then $f|_A = f \circ \iota_A$ and $(g \circ f)|_A = (g \circ f) \circ \iota_A$, so by associtivity of function composition,

$$(g \circ f)|_A = (g \circ f) \circ \iota_A = g \circ (f \circ \iota_A) = g \circ (f|_A)$$

Proposition 0.18 (Exercise 13). Let X be a space and $A \subset X$, and suppose r_t^0 and r_t^1 are deformation retractions of X onto A. Then there is a "continuous family" r_t^s such that r_t^s is a deformation retraction of X onto A for each $s \in [0,1]$. The family is continuous in the sense that the map $X \times I \times I \to X$ given by $(x, s, t) \mapsto r_t^s(x)$ is continuous.

Proof. (Note: This proof is somewhere between incomplete and useless. Nevertheless, this line of thinking seems profitable.) Because r_t^0 and r_t^1 are deformation retractions, we have

$$r_0^0 = r_0^1 = \operatorname{Id}_X$$
 $r_t^0|_A = r_t^1|_A = \operatorname{Id}_A$ $r_1^0(X) = r_1^1(X) = A$

For $s \in [0,1]$, define $h_t^s = r_{t(1-s)}^0 \circ r_{ts}^1$. This is well-defined because for $s,t \in [0,1]$, we have $t(1-s), ts \in [0,1]$. Then we check that

$$h_t^0 = r_t^0 \circ r_0^1 = r_t^0 \circ \operatorname{Id}_X = r_t^0$$
$$h_t^1 = r_0^0 \circ r_t^1 = \operatorname{Id}_X \circ r_t^1 = r_t^1$$

So we can take $r_t^s = h_t^s$. Both of the following are compositions of continuous functions,

$$(x, s, t) \mapsto (x, ts) \mapsto r_{ts}^1(x)$$

 $(x, s, t) \mapsto (x, t(1-s)) \mapsto r_{t(1-s)}^0(x)$

so the composition

$$(x,s,t)\mapsto r^0_{t(1-s)}\circ r^1_{ts}(x)$$

is also continuous. We check that each r_s^t is a deformation retraction onto A.

$$r_0^s = r_0^0 \circ r_0^1 = \operatorname{Id}_X \circ \operatorname{Id}_X = \operatorname{Id}_X$$

$$r_t^s|_A = (r_{t(1-s)}^0 \circ r_{ts}^1)|_A = r_{t(1-s)}^0 \circ (r_{ts}^1|_A) = r_{t(1-s)}^0 \circ \operatorname{Id}_A = \operatorname{Id}_A \circ \operatorname{Id}_A = \operatorname{Id}_A$$

However, we do not know that $r_1^s(X) = A$, so we can't say that r_t^s is a family of deformation retractions.