Homework 1
Algebraic Topology

Joshua Ruiter

February 12, 2018

Note: When unspecified, a map is assumed to be continuous.

Lemma 0.1 (not assigned, just stated for clarity). Composition of continuous maps is
continuous.

Definition 0.1. Let X Y be spaces and f : X — Y be a continuous map. Consider the
space (X x I) Y, and define an equivalence relation (z,1) ~ f(z). Then we define the
mapping cylinder of f, denoted My, to be (X x I)UY/ ~.

Definition 0.2. Let X be a space and ~ an equivalence relation on X. The quotient
space X/ ~ is the set of equivalence classes,

(X/ ~) = {le] : ¢ € X}

Note that 7 : X — X/ ~ given by z +— [z] is surjective. We define a set U C X/ ~ to be
open if 771(U) is open in X. This gives rise to a topology on X/ ~, called the quotient
topology.

Definition 0.3. Let {X;}c; be a family of topological spaces. Let X be the cartesian set
product [[,.; X;. We define the product topology on X by defining open sets to be sets
of the form [, , U; where U; C X is open and U; # X; for only finitely many i.

Definition 0.4. A CW comlex or cell complex is a space built up from ataching n-cells
to n — 1 cells. More precisely, begin with a set X° of points (0-cells). Inductively, form the
n-skeleton X™ from X"~ by attaching n-cells e” via maps ¢, : S"~' — X"~!. That is, X"

is the space
X" = (X”1 |_|Dg> / ~

where z ~ ¢, (z) for z € D" = S"~1. That is,

X" — Xn—l |_| eg
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If this process terminates for some n, then X = X™ has the expected quotient topology. If
the process does not terminate, then A C X is open iff AN X™ is open in X" for every n.
(This is called the weak topology.)

Definition 0.5. Let C, D be categories, and let ;G : C' — D be covariant functors.
A natural transformation 7 : F' — G is assigns each object X € Ob(C) to a morphism
nx : F(X) — G(X) such that for every morphism f : X — Y, we have ny o F(f) = G(f)onx.
That is, the diagram commutes:

G(X) —

Definition 0.6. Let X be a topological space and A C X. The pair (X, A) has the homo-
topy extension property if for every homotopy f; : A — Y and every map Fy: X — Y
such that Fy|a = fo, there exists a homotopy F; : X — Y such that F;|4 = f; for all t.

(Exercise 2)
We construct an explicit deformation retraction of R™ \ {0} onto S"~! = {z € R™ : |z| = 1}.
Define f; : R\ {0} — R™\ {0} by

fila) = (1=t + 1
| ]
Then fo(xz) = x so fo = Idgn\(oy. Also, fi(z) = o € S"=1 which is surjective onto the
circle, so fi(R* 1\ {0}) = S"~. Finally, fi|gn-1 = Idgn-1 because if z € S"" !, then |z| =1
so fi(x) = (1 —t)z +tx = x. Thus f; is the required deformation retraction.

The next two lemmas say that we can right- and left-compose with homotopic maps to
get homotopic maps. These provide a very clean proof that the composition of homotopy
equivalences is a homotopy equivalence.

Lemma 0.2 (for Exercise 3a). Let fo, fi : X — Y be homotopic and g : Y — Z. Then
9fo > ghr-

Proof. Let f; : X — Y be a homotopy from fy to fi. Then gf; : X — Y is a homotopy from
9fo to gf1. O

Lemma 0.3 (for Exercise 3a). Let fo, fi : X — Y be homotopic and h : Z — X. Then
f()h ~ flh

Proof. Let f; : X — Y be a homotopy from fy to fi. Then f;h is a homotopy from fyh to
fih. O



Proposition 0.4 (Exercise 3a). A composition of homotopy equivalences is a homotopy
equivalence. Thus homotopy equivalence is an equivalence relation.

Proof. Let fi : X =Y and f5 : Y — Z be homotopy equivalences. We will show that the
composition f5f; is a homotopy equivalence.

Since f1, fo are homotopy equivalences, there exist maps ¢; : Y — X and ¢5 : Z — Y
such that fig; ~ Idy, g1 f1 ~ Idx, foge ~ Idz, and gofs ~ Idy. Then since fig; ~ Idy, by
the Lemma [0.2] above, fafig1 ~ foldy = fo. Then by Lemma [0.3] fofi19192 ~ fog2 ~ Idz.
Similarly,

g2f2 ~Idy = 9192f2 >~ 0 Idy = g = 9192f2f1 = glfl ~ Idx

Thus we have (fof1)(g192) ~ Idz and (g192)(fo.f1) =~ Idx. Thus g g2 is the required homotopy
inverse for fifs, hence fifs is a homotopy equivalence between X and Z. This establishes
transitivity of homotopy equivalence.

Reflexivity and symmetric are quick to show. (Reflexivity) Let X be a space. Then Idy
is a homotopy equivalence from X to itself, since there exists a map, namely Idy, such that
Idy Idx ~ Idx. Thus X ~ X. (Symmetry) Let X ~ Y via f. Then the map g : ¥ — X
where fg ~ Idy and ¢gf ~ Idyx is a homotopy equivalence from Y to X, so ¥ ~ X. [

Proposition 0.5 (Exercise 3b). Let XY be spaces. The ~ is an equivalence relation on
maps [ : X =Y.

Proof. Let f,g,h : X — Y be continuous. Then f ~ f by the homotopy fi(z) = f(x). If
f =~ g via a homotopy f;, then g ~ f via f;_,. Finally, suppose f ~ g via f; and g >~ h via
gi- Then define

[ fam) 0<t<1)2
Pulx) = {ggt_l(x) 1/2<t<1

Note that ¢q/2(x) is well defined because f1(x) = g(z) = go(x). Also note that ¢ is continuous
by the Gluing Lemma. Then ¢ is a homotopy between f and h, so f ~ h. O]

Proposition 0.6 (Exercise 3c). Let fo, f1 : X = Y such that fy is a homotopy equivalence
and fo =~ f1. Then f1 is a homotopy equivalence.

Proof. Since fy is a homotopy equivalence, there exists amap ¢g : Y — X such that fyg ~ Idy
and gfy ~ Idx. Then since fy ~ fi, by Lemma [0.2] ¢gfo ~ ¢f1 and since ~ is transitive,
gfo = Idy ~ gf;. Likewise, since fo ~ f; by Lemma[0.3| fog ~ f1g so fig ~ Idy. Thus f; is
also a homotopy equivalence from X to Y via the same map g. O

Proposition 0.7 (Exercise 4). If X deformation retracts to A in the weak sense, then the
inclusion 1 : A — X is a homotopy equivalence.



Proof. Let f; : X — X be a weak deformation retraction, that is, f; is a homotopy such
that fo = Idx, fi(X) C A, and f;(A) C A. Then we have that f;. ~ Id4 via the homotopy
fo=fila= fu: A— A since fo = fola = Idx |4 = Ida, and fi = fila = fi.. (Note that
fi(A) C A because f;(A) C A.) We also have that ¢f; ~ Idx, via the homotopy f; : X — X,
since fo = Idx and f; = ¢f; since f1(X) C A. Thus f; is a homotopy inverse for ¢, so ¢ is a
homotopy equivalence. O

Proposition 0.8 (Exercise 5, not assigned, but needed for Exercise 6). If a space X de-
formation retracts to a point x € X, then for each neighborhood U of x in X there exists a
neighborhood V- C U of x such that the inclusion map V — U 1is nullhomotopic.

Lemma 0.9 (for Exercise 6a). Let X be a space and A C X. If the inclusion 14 : A — X
s nullhomotopic, then A lies in a single path component of X.

Proof. Let f; : A — X be a homotopy with fo = 14 and f1(A) = x¢. Let y € A. Then define
v: I — X by y(t) = fi(y). We have v(0) = y and (1) = ¢, so y is contained in the path
component of xg in X. Since y was arbitrary, all of A lies in the path component of zy. [

Lemma 0.10 (for Exercise 6). Let X be a space, and let A C B C X, and suppose that
there 1s a deformation retraction f; : X — X of X onto B and a deformation retraction
gi : B— B of B onto A. Then there is a deformation retraction of X onto A.

Proof. Let f; : X — X and ¢, : B — B be deformation retractions, i.e.
fo=1Idx hi(X)=B filp = 1dg

g0 = 1dp 9(B)=A gila = 1da
Define h; : X — X by
0<t<1/2
() = ¢ ) st<y
g1 0 filz) 1/2<t<1

For t = 1/2, the two alternate definitions agree, because fo1/2) = fi and goqj2)-1 0 f1 =
goo fi = Ildgof; = fi. Hence h is well-defined and continuous by the Gluing Lemma.
Furthermore, h is a deformation retraction of X onto A, as hg = fy = Idx, and hy(X) =
g10 fi(X)=q(B) = A and

hala = {f2t|A 0<t<1/2
(g2e-10fi)la 0<t<1/2

Ids 0<t<1/2

- {g%—l oldy 0<t<1/2

CJIda 0<t<1)2
o lIds 0<t<1/2

=Idy



Proposition 0.11 (Exercise 6a). Let X be the subspace of R* consisting of the horizontal
segment [0, 1] x {0} together with all the vertical segments {r} x [0,1 —r| forr € QN|0,1].
Then X deformation retracts to any point in the segment [0,1] x {0} but not to any other
point.

Proof. First we show that X deformation retracts onto A = [0, 1] x {0}. Geometrically, we
retract each of the line segments {r} x [0,1 — r| straight down toward the z-axis. More
formally, define f; : X — X by fi(z,y) = (z,(1 — t)y). Note that this does map into X.
Also, fo(z,y) = (z,y) and fi(z,y) = (x,0) and fi|a = Id4, so f; is a deformation retraction.

Now we show that A retracts onto any point inside itself. Let (xq,0) € [0,1] x {0}. Define
gt A— Aby g(x,0) = ((1 —t)x + txg,0). Then go(z,0) = (x,0) and g;(z,0) = (x0,0) and
91(x,0) = (x0,0) so g; is a deformation retraction of A onto (z9,0). Thus X deformation
retracts onto (zo,0).

Now we show that X does not deformation retract onto any other point. Suppose X
retracts onto (z,y) with y # 0. Then the ball centered at (z,y) with radius %y does not
intersect the x-axis. Let U be the intersection of this ball with X. Then U is a disjoint union
of vertical (open) line segments, each of which constitutes a separate path component. In
particular, the path component containing (z,y) is U N ({z} x [0,1 — z]).

By Exercise 5, there is a neighorhood V' C U of (z,y) such that the inclusion map V' — U
is nullhomotopic, so by the above lemma, V' lies in a single path component of U. Since
(x,y) € V, we have V.C UN ({(z} x [0,1 — z]). Since V is an open neighborhood of (x,y),
for some € > 0 we must have B((z,y),€) N X C V. Because the rationals are dense, for any
€ > 0, there is a rational r # x such that 0 < r < ¢, so B((z,y),e) N ({r} x [0,1 —7r]) # 0.
Thus V must intersect another path component of U nontrivially. This is a contradiction,
so we conclude that X does not deformation retract onto any point off of the x-axis. O]

(I broke Exercise 6b into two separate propositions because showing that Y is contractible
became a very very long proof.)

Proposition 0.12 (Exercise 6b, part one). Let Y be the subspace of R? that is the union of
infinitely many copies of X (see picture in Hatcher on page 18). The'Y is contractible.

Proof. Let Z be the zigzag subspace, let y € Y. We define a path 7, : [0, 00) — Y by setting
7y(t) to be the point in Y by “flowing” the point y along Y with velocity one toward the
right. So for y € Z, v,(y) is the point in Z to the right of y that has distance ¢ from y, in the
sense of traveling only in Y. For a point y in one of the “comb hairs” of length a, for t < a,
7:(y) is the point on the same comb hair at distance a — ¢ from the base of that comb hair.
At time a, we have v,(y) € Z, and after that we already defined what ~,(y) does. Then we
define hy : Y — Y by h(y) = 7,(t). We claim that hy : Y — Z is a homotopy equivalence.
(Note that hy does in fact map into Z, since no point in Y is more than distance one from
Z, while flowing along Y".)

We need to show several things: that h; is continuous, and that there is a continuous
function g : Z — Y such that g o h; ~ Idy and hy; o g ~ Idz. First, we show that h is
continuous. It is sufficient to show that the preimage of an open “interval” of Z is open in Y.



(Note: Y has the subspace topology from R?). By an interval of Z, we mean the intersection
Z with an open ball in R?. First consider a single point y € Z. The preimage h;'(y) is the
intersection of a vertical line in R? with Y. Thus, if U is an open interval in Z, the preimage
is the union of of an interval of vertical lines in R?, that is, h;'(U) is the intersection of Y’
with an infinite open rectangle from R2. Thus h;'(U) is open, so h; is continuous.

Now we need a homotopy inverse for h;. Define g, : 7 — Y by sending the point z to the
point on Z at distance ¢ (flowing along Y') to the left of y. Then g, is continuous, since the
preimage of any U is a “shift” of U by flowing it to the right along Z. (The preimage of any
point in one of the comb hairs is empty.) We will show that g; is a homotopy inverse for h;.
We see immediately that hy o g = Idz ~ Idz, so all that remains is to show g; o hy ~ Idy.

First, we claim that h; ~ Idy via h, for t € [0,1]. We have hy = Idy and at ¢t = 1 we
have hy, so we need to show that the map (y,t) — hi(y) is continuous. Consider a single
point yy € Y. The preimage of 1y a the “slice” of the form

{(y,t) € Y x [0,1] - hu(y) = 9o} = |J (hi'(wo)) x {t}

te(0,1]

For an open set in Y, the preimage is a union over such slices, which is open in the product
topology on Y x [0, 1], so (y,t) — hy(y) is continuous. Thus h; ~ Idy. Now we claim that
g1 0o hy >~ hy. Define f,: Y =Y by f;, = g, 0 hy. Then

fo=goohi =1Idzoh; =My
fi=gioh

and f; is continuous since g; and h; are continuous. Thus ¢g; o h; ~ h;. By transitivity,
g1 0 hy ~ Idy, so g1 is a homotopy inverse for hy, so Y is homotopic to Z. It is not hard to
see that Z is contractible, since it is homeomorphic to R. Thus Y is contractible. O

Proposition 0.13 (Exercise 6b, part two). Let Y be the subspace of R? that is the union of
infinitely many copies of X (see picture in Hatcher on page 18). The'Y does not deformation
retract onto any point.

Proof. First, suppose z is a point in the “comb” part of some copy of X. By the same
argument as in part (a), there is a ball B of sufficiently small radius so that BNY" is discon-
nected, and then if Y deformation retracts to x then by Exercise 5 we get a neighborhood
V € BNY that is path connected, which is a contradiction.

Now suppose that z is a point in the zigzag line Z part of Y. There is a ball B of
sufficiently small radius so that any sub-neighborhood of BNY is disconnected, because the
“comb fibers” parallel to the segment where z lives are arbitrarily close to z (this still holds
if z is a “corner” of Z). Then by the argument above, if Y deformation retracts onto z then
there is a path connected neighborhood of 2z, which is a contradiction. Thus Y does not
deformation retract onto any point. O

Proposition 0.14 (Exercise 6¢). Let Y be the space described in part (b) and let Z be the
zigzag subspace of Y homeomorphic to R. (See picture on page 18 of Hatcher.) There is a
deformation retraction in the weak sense of Y onto Z, but no true deformation retraction.



Proof. To get a deformation retraction in the weak sense of Y onto Z, use the map h; : Y —
Y in the proof in part (b) that Y is contractible. We have hy = Idy and h(Y) C Z and
hi(Z) C Z for all t, and we showed that (y,t) — hy(y) is continuous, so h; is a deformation
retraction in the weak sense of Y onto Z.

Now we show that there is no deformation retraction of Y onto Z. First, note that since Z
is homeomorphic to R, Z does deformation retract onto a point. If there were a deformation
retraction of Y onto Z, then that retraction followed by a deformation retraction of Z to
a point would give a deformation retraction of Y to a point, which is impossible by part
(b). O

As usual, in the next few propositions, the word “map” means continuous function. Keep
in mind that the composition of continuous functions is continuous.

Proposition 0.15 (Exercise 10, part one). A space X is contractible if and only if for every
space Y and every map f: X — Y, f is nullhomotopic.

Proof. Suppose that for every space Y, every map f : X — Y is nullhomotopic. In particular,
we can choose Y = X, and f = Idy. By hypothesis, f is nullhomotopic, so X is contractible.

Now suppose that X is contractible. Let Y be a space and f: X — Y. Let h; : X — X be
a homotopy with hy = Idx and h;(z) = x9. Then hy = fhy : X — Y satsifies hg = fldx = f
and hy(z) = fhi(z) = f(x), which is constant. Thus %, is a homotopy from f to a constant
map, so f is nullhomotopic. m

Proposition 0.16 (Exercise 10, part one). A space X is contractible if and only if for every
space Y and every map f:Y — X, f is nullhomotopic.

Proof. Suppose that for every space Y, every map f : Y — X is nullhomotopic. In particular,
we can choose Y = X and f = Idy, so Idx is nullhomotopic, so X is contractible.

Now suppose that X is contractible. Let Y be a space and f : ¥ — X a map. Let
hi : X — X be a homotopy with hy = Idx and h;(z) = x9. Then hy = hyf : Y — X satsifies

ho = Idy f = f and El(x) = hy f(x) = o, which is constant. Thus h; is a homotopy from f
to a constant map, so f is nullhomotopic. O

The next lemma is quite trivial, but removes any doubt.

Lemma 0.17 (for Exercise 13). Let f : X — Y and g : Y — Z be functions, and let A C X.
Then

(go flla=go(fla)

Proof. Let 14 : A — X be the inclusion. Then f|4 = fors and (go f)|a = (go f) o4, so
by associtivity of function composition,

(gof)la=(gof)ora=go(fora)=go(fla)



Proposition 0.18 (Exercise 13). Let X be a space and A C X, and suppose r¥ and r} are
deformation retractions of X onto A. Then there is a “continuous family” r{ such that r}
is a deformation retraction of X onto A for each s € [0,1]. The family is continuous in the
sense that the map X x I x I — X given by (x,s,t) — ri(z) is continuous.

Proof. (Note: This proof is somewhere between incomplete and useless. Nevertheless, this
line of thinking seems profitable.) Because r{ and r} are deformation retractions, we have

rg =ry = ldx rla=rila=1ds nX)=r(X)=A4

For s € [0,1], define hj = ry, o ry. This is well-defined because for s,t € [0, 1], we have
t(1 —s),ts € [0,1]. Then we check that

R =1 ory =71l oldy =17}

10 .1_ 11
hy =rygor; =lIdyor, =,

So we can take rj = h{. Both of the following are compositions of continuous functions,
(w,5,8) = (w,ts) = 1y ()
(iL‘, Svt) = (:Evt(l - 8)) = 7”?(1_8)(.’17)

so the composition
(.CL’, S5 t) = T?(lfs) © rgs(x)

is also continuous. We check that each 7% is a deformation retraction onto A.

rg=r5ory =ldyoldy = Idy

rila= (7“?(175) ° Ttls)|A = 7”?(173) ° (Ttls‘A) = 7"?(175) olds =1Idgolds =1dy

However, we do not know that r§(X) = A, so we can’t say that r; is a family of deformation
retractions. [l



