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Note: When unspecified, a map is assumed to be continuous.

Lemma 0.1 (not assigned, just stated for clarity). Composition of continuous maps is
continuous.

Definition 0.1. Let X, Y be spaces and f : X → Y be a continuous map. Consider the
space (X × I) t Y , and define an equivalence relation (x, 1) ∼ f(x). Then we define the
mapping cylinder of f , denoted Mf , to be (X × I) t Y/ ∼.

Definition 0.2. Let X be a space and ∼ an equivalence relation on X. The quotient
space X/ ∼ is the set of equivalence classes,

(X/ ∼) = {[x] : x ∈ X}

Note that π : X → X/ ∼ given by x 7→ [x] is surjective. We define a set U ⊂ X/ ∼ to be
open if π−1(U) is open in X. This gives rise to a topology on X/ ∼, called the quotient
topology.

Definition 0.3. Let {Xi}i∈I be a family of topological spaces. Let X be the cartesian set
product

∏
i∈I Xi. We define the product topology on X by defining open sets to be sets

of the form
∏

i∈I Ui where Ui ⊂ Xi is open and Ui 6= Xi for only finitely many i.

Definition 0.4. A CW comlex or cell complex is a space built up from ataching n-cells
to n− 1 cells. More precisely, begin with a set X0 of points (0-cells). Inductively, form the
n-skeleton Xn from Xn−1 by attaching n-cells enα via maps φα : Sn−1 → Xn−1. That is, Xn

is the space

Xn =

(
Xn−1

⊔
α

Dn
α

)
/ ∼

where x ∼ φα(x) for x ∈ ∂Dn
α
∼= Sn−1. That is,

Xn = Xn−1
⊔
α

enα
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If this process terminates for some n, then X = Xn has the expected quotient topology. If
the process does not terminate, then A ⊂ X is open iff A ∩Xn is open in Xn for every n.
(This is called the weak topology.)

Definition 0.5. Let C,D be categories, and let F,G : C → D be covariant functors.
A natural transformation η : F → G is assigns each object X ∈ Ob(C) to a morphism
ηX : F (X)→ G(X) such that for every morphism f : X → Y , we have ηY ◦F (f) = G(f)◦ηX .
That is, the diagram commutes:

F (X)
F (f)−−−→ F (Y )

ηX

y ηY

y
G(X)

G(f)−−−→ G(Y )

Definition 0.6. Let X be a topological space and A ⊂ X. The pair (X,A) has the homo-
topy extension property if for every homotopy ft : A → Y and every map F0 : X → Y
such that F0|A = f0, there exists a homotopy Ft : X → Y such that Ft|A = ft for all t.

(Exercise 2)
We construct an explicit deformation retraction of Rn \ {0} onto Sn−1 = {x ∈ Rn : |x| = 1}.
Define ft : Rn \ {0} → Rn \ {0} by

ft(x) = (1− t)x+ t
x

|x|

Then f0(x) = x so f0 = IdRn\{0}. Also, f1(x) = x
|x| ∈ Sn−1, which is surjective onto the

circle, so f1(Rn−1 \ {0}) = Sn−1. Finally, ft|Sn−1 = IdSn−1 because if x ∈ Sn−1, then |x| = 1
so ft(x) = (1− t)x+ tx = x. Thus ft is the required deformation retraction.

The next two lemmas say that we can right- and left-compose with homotopic maps to
get homotopic maps. These provide a very clean proof that the composition of homotopy
equivalences is a homotopy equivalence.

Lemma 0.2 (for Exercise 3a). Let f0, f1 : X → Y be homotopic and g : Y → Z. Then
gf0 ' gf1.

Proof. Let ft : X → Y be a homotopy from f0 to f1. Then gft : X → Y is a homotopy from
gf0 to gf1.

Lemma 0.3 (for Exercise 3a). Let f0, f1 : X → Y be homotopic and h : Z → X. Then
f0h ' f1h.

Proof. Let ft : X → Y be a homotopy from f0 to f1. Then fth is a homotopy from f0h to
f1h.
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Proposition 0.4 (Exercise 3a). A composition of homotopy equivalences is a homotopy
equivalence. Thus homotopy equivalence is an equivalence relation.

Proof. Let f1 : X → Y and f2 : Y → Z be homotopy equivalences. We will show that the
composition f2f1 is a homotopy equivalence.

Since f1, f2 are homotopy equivalences, there exist maps g1 : Y → X and g2 : Z → Y
such that f1g1 ' IdY , g1f1 ' IdX , f2g2 ' IdZ , and g2f2 ' IdY . Then since f1g1 ' IdY , by
the Lemma 0.2 above, f2f1g1 ' f2 IdY = f2. Then by Lemma 0.3, f2f1g1g2 ' f2g2 ' IdZ .
Similarly,

g2f2 ' IdY =⇒ g1g2f2 ' g1 IdY = g1 =⇒ g1g2f2f1 ' g1f1 ' IdX

Thus we have (f2f1)(g1g2) ' IdZ and (g1g2)(f2f1) ' IdX . Thus g1g2 is the required homotopy
inverse for f1f2, hence f1f2 is a homotopy equivalence between X and Z. This establishes
transitivity of homotopy equivalence.

Reflexivity and symmetric are quick to show. (Reflexivity) Let X be a space. Then IdX
is a homotopy equivalence from X to itself, since there exists a map, namely IdX , such that
IdX IdX ' IdX . Thus X ' X. (Symmetry) Let X ' Y via f . Then the map g : Y → X
where fg ' IdY and gf ' IdX is a homotopy equivalence from Y to X, so Y ' X.

Proposition 0.5 (Exercise 3b). Let X, Y be spaces. The ' is an equivalence relation on
maps f : X → Y .

Proof. Let f, g, h : X → Y be continuous. Then f ' f by the homotopy ft(x) = f(x). If
f ' g via a homotopy ft, then g ' f via f1−t. Finally, suppose f ' g via ft and g ' h via
gt. Then define

φt(x) =

{
f2t(x) 0 ≤ t ≤ 1/2

g2t−1(x) 1/2 ≤ t ≤ 1

Note that φ1/2(x) is well defined because f1(x) = g(x) = g0(x). Also note that φ is continuous
by the Gluing Lemma. Then φ is a homotopy between f and h, so f ' h.

Proposition 0.6 (Exercise 3c). Let f0, f1 : X → Y such that f0 is a homotopy equivalence
and f0 ' f1. Then f1 is a homotopy equivalence.

Proof. Since f0 is a homotopy equivalence, there exists a map g : Y → X such that f0g ' IdY
and gf0 ' IdX . Then since f0 ' f1, by Lemma 0.2, gf0 ' gf1 and since ' is transitive,
gf0 ' IdX ' gf1. Likewise, since f0 ' f1 by Lemma 0.3 f0g ' f1g so f1g ' IdY . Thus f1 is
also a homotopy equivalence from X to Y via the same map g.

Proposition 0.7 (Exercise 4). If X deformation retracts to A in the weak sense, then the
inclusion ι : A ↪→ X is a homotopy equivalence.
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Proof. Let ft : X → X be a weak deformation retraction, that is, ft is a homotopy such
that f0 = IdX , f1(X) ⊂ A, and ft(A) ⊂ A. Then we have that f1ι ' IdA via the homotopy

f̃t = ft|A = ftι : A → A, since f̃0 = f0|A = IdX |A = IdA, and f̃1 = f1|A = f1ι. (Note that

f̃t(A) ⊂ A because ft(A) ⊂ A.) We also have that ιf1 ' IdX , via the homotopy ft : X → X,
since f0 = IdX and f1 = ιf1 since f1(X) ⊂ A. Thus f1 is a homotopy inverse for ι, so ι is a
homotopy equivalence.

Proposition 0.8 (Exercise 5, not assigned, but needed for Exercise 6). If a space X de-
formation retracts to a point x ∈ X, then for each neighborhood U of x in X there exists a
neighborhood V ⊂ U of x such that the inclusion map V ↪→ U is nullhomotopic.

Lemma 0.9 (for Exercise 6a). Let X be a space and A ⊂ X. If the inclusion ιA : A ↪→ X
is nullhomotopic, then A lies in a single path component of X.

Proof. Let ft : A→ X be a homotopy with f0 = ιA and f1(A) = x0. Let y ∈ A. Then define
γ : I → X by γ(t) = ft(y). We have γ(0) = y and γ(1) = x0, so y is contained in the path
component of x0 in X. Since y was arbitrary, all of A lies in the path component of x0.

Lemma 0.10 (for Exercise 6). Let X be a space, and let A ⊂ B ⊂ X, and suppose that
there is a deformation retraction ft : X → X of X onto B and a deformation retraction
gt : B → B of B onto A. Then there is a deformation retraction of X onto A.

Proof. Let ft : X → X and gt : B → B be deformation retractions, i.e.

f0 = IdX f1(X) = B ft|B = IdB

g0 = IdB g1(B) = A gt|A = IdA

Define ht : X → X by

ht(x) =

{
f2t(x) 0 ≤ t ≤ 1/2

g2t−1 ◦ f1(x) 1/2 ≤ t ≤ 1

For t = 1/2, the two alternate definitions agree, because f2(1/2) = f1 and g2(1/2)−1 ◦ f1 =
g0 ◦ f1 = IdB ◦f1 = f1. Hence h is well-defined and continuous by the Gluing Lemma.
Furthermore, h is a deformation retraction of X onto A, as h0 = f0 = IdX , and h1(X) =
g1 ◦ f1(X) = g1(B) = A and

ht|A =

{
f2t|A 0 ≤ t ≤ 1/2

(g2t−1 ◦ f1)|A 0 ≤ t ≤ 1/2

=

{
IdA 0 ≤ t ≤ 1/2

g2t−1 ◦ IdA 0 ≤ t ≤ 1/2

=

{
IdA 0 ≤ t ≤ 1/2

IdA 0 ≤ t ≤ 1/2

= IdA
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Proposition 0.11 (Exercise 6a). Let X be the subspace of R2 consisting of the horizontal
segment [0, 1]× {0} together with all the vertical segments {r} × [0, 1− r] for r ∈ Q ∩ [0, 1].
Then X deformation retracts to any point in the segment [0, 1] × {0} but not to any other
point.

Proof. First we show that X deformation retracts onto A = [0, 1]× {0}. Geometrically, we
retract each of the line segments {r} × [0, 1 − r] straight down toward the x-axis. More
formally, define ft : X → X by ft(x, y) = (x, (1 − t)y). Note that this does map into X.
Also, f0(x, y) = (x, y) and f1(x, y) = (x, 0) and ft|A = IdA, so ft is a deformation retraction.

Now we show that A retracts onto any point inside itself. Let (x0, 0) ∈ [0, 1]×{0}. Define
gt : A→ A by gt(x, 0) = ((1− t)x+ tx0, 0). Then g0(x, 0) = (x, 0) and g1(x, 0) = (x0, 0) and
gt(x0, 0) = (x0, 0) so gt is a deformation retraction of A onto (x0, 0). Thus X deformation
retracts onto (x0, 0).

Now we show that X does not deformation retract onto any other point. Suppose X
retracts onto (x, y) with y 6= 0. Then the ball centered at (x, y) with radius 1

2
y does not

intersect the x-axis. Let U be the intersection of this ball with X. Then U is a disjoint union
of vertical (open) line segments, each of which constitutes a separate path component. In
particular, the path component containing (x, y) is U ∩ ({x} × [0, 1− x]).

By Exercise 5, there is a neigborhood V ⊂ U of (x, y) such that the inclusion map V ↪→ U
is nullhomotopic, so by the above lemma, V lies in a single path component of U . Since
(x, y) ∈ V , we have V ⊂ U ∩ ({(x} × [0, 1− x]). Since V is an open neighborhood of (x, y),
for some ε > 0 we must have B((x, y), ε) ∩X ⊂ V . Because the rationals are dense, for any
ε > 0, there is a rational r 6= x such that 0 < r < ε, so B((x, y), ε) ∩ ({r} × [0, 1 − r]) 6= ∅.
Thus V must intersect another path component of U nontrivially. This is a contradiction,
so we conclude that X does not deformation retract onto any point off of the x-axis.

(I broke Exercise 6b into two separate propositions because showing that Y is contractible
became a very very long proof.)

Proposition 0.12 (Exercise 6b, part one). Let Y be the subspace of R2 that is the union of
infinitely many copies of X (see picture in Hatcher on page 18). The Y is contractible.

Proof. Let Z be the zigzag subspace, let y ∈ Y . We define a path γy : [0,∞)→ Y by setting
γy(t) to be the point in Y by “flowing” the point y along Y with velocity one toward the
right. So for y ∈ Z, γt(y) is the point in Z to the right of y that has distance t from y, in the
sense of traveling only in Y . For a point y in one of the “comb hairs” of length a, for t ≤ a,
γt(y) is the point on the same comb hair at distance a− t from the base of that comb hair.
At time a, we have γa(y) ∈ Z, and after that we already defined what γt(y) does. Then we
define ht : Y → Y by ht(y) = γy(t). We claim that h1 : Y → Z is a homotopy equivalence.
(Note that h1 does in fact map into Z, since no point in Y is more than distance one from
Z, while flowing along Y .)

We need to show several things: that h1 is continuous, and that there is a continuous
function g : Z → Y such that g ◦ h1 ' IdY and h1 ◦ g ' IdZ . First, we show that h1 is
continuous. It is sufficient to show that the preimage of an open “interval” of Z is open in Y .
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(Note: Y has the subspace topology from R2). By an interval of Z, we mean the intersection
Z with an open ball in R2. First consider a single point y ∈ Z. The preimage h−11 (y) is the
intersection of a vertical line in R2 with Y . Thus, if U is an open interval in Z, the preimage
is the union of of an interval of vertical lines in R2, that is, h−11 (U) is the intersection of Y
with an infinite open rectangle from R2. Thus h−11 (U) is open, so h1 is continuous.

Now we need a homotopy inverse for h1. Define gt : Z → Y by sending the point z to the
point on Z at distance t (flowing along Y ) to the left of y. Then gt is continuous, since the
preimage of any U is a “shift” of U by flowing it to the right along Z. (The preimage of any
point in one of the comb hairs is empty.) We will show that g1 is a homotopy inverse for h1.
We see immediately that h1 ◦ g1 = IdZ ' IdZ , so all that remains is to show g1 ◦ h1 ' IdY .

First, we claim that h1 ' IdY via ht for t ∈ [0, 1]. We have h0 = IdY and at t = 1 we
have h1, so we need to show that the map (y, t) 7→ ht(y) is continuous. Consider a single
point y0 ∈ Y . The preimage of y0 a the “slice” of the form

{(y, t) ∈ Y × [0, 1] : ht(y) = y0} =
⋃
t∈[0,1]

(
h−1t (y0)

)
× {t}

For an open set in Y , the preimage is a union over such slices, which is open in the product
topology on Y × [0, 1], so (y, t) 7→ ht(y) is continuous. Thus h1 ' IdY . Now we claim that
g1 ◦ h1 ' h1. Define ft : Y → Y by ft = gt ◦ h1. Then

f0 = g0 ◦ h1 = IdZ ◦h1 = h1

f1 = g1 ◦ h1

and ft is continuous since gt and h1 are continuous. Thus g1 ◦ h1 ' h1. By transitivity,
g1 ◦ h1 ' IdY , so g1 is a homotopy inverse for h1, so Y is homotopic to Z. It is not hard to
see that Z is contractible, since it is homeomorphic to R. Thus Y is contractible.

Proposition 0.13 (Exercise 6b, part two). Let Y be the subspace of R2 that is the union of
infinitely many copies of X (see picture in Hatcher on page 18). The Y does not deformation
retract onto any point.

Proof. First, suppose x is a point in the “comb” part of some copy of X. By the same
argument as in part (a), there is a ball B of sufficiently small radius so that B ∩Y is discon-
nected, and then if Y deformation retracts to x then by Exercise 5 we get a neighborhood
V ⊂ B ∩ Y that is path connected, which is a contradiction.

Now suppose that z is a point in the zigzag line Z part of Y . There is a ball B of
sufficiently small radius so that any sub-neighborhood of B ∩Y is disconnected, because the
“comb fibers” parallel to the segment where z lives are arbitrarily close to z (this still holds
if z is a “corner” of Z). Then by the argument above, if Y deformation retracts onto z then
there is a path connected neighborhood of z, which is a contradiction. Thus Y does not
deformation retract onto any point.

Proposition 0.14 (Exercise 6c). Let Y be the space described in part (b) and let Z be the
zigzag subspace of Y homeomorphic to R. (See picture on page 18 of Hatcher.) There is a
deformation retraction in the weak sense of Y onto Z, but no true deformation retraction.
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Proof. To get a deformation retraction in the weak sense of Y onto Z, use the map ht : Y →
Y in the proof in part (b) that Y is contractible. We have h0 = IdY and h(Y ) ⊂ Z and
ht(Z) ⊂ Z for all t, and we showed that (y, t) 7→ ht(y) is continuous, so ht is a deformation
retraction in the weak sense of Y onto Z.

Now we show that there is no deformation retraction of Y onto Z. First, note that since Z
is homeomorphic to R, Z does deformation retract onto a point. If there were a deformation
retraction of Y onto Z, then that retraction followed by a deformation retraction of Z to
a point would give a deformation retraction of Y to a point, which is impossible by part
(b).

As usual, in the next few propositions, the word “map” means continuous function. Keep
in mind that the composition of continuous functions is continuous.

Proposition 0.15 (Exercise 10, part one). A space X is contractible if and only if for every
space Y and every map f : X → Y , f is nullhomotopic.

Proof. Suppose that for every space Y , every map f : X → Y is nullhomotopic. In particular,
we can choose Y = X, and f = IdX . By hypothesis, f is nullhomotopic, so X is contractible.

Now suppose that X is contractible. Let Y be a space and f : X → Y . Let ht : X → X be
a homotopy with h0 = IdX and h1(x) = x0. Then h̃t = fht : X → Y satsifies h̃0 = f IdX = f

and h̃1(x) = fh1(x) = f(x0), which is constant. Thus h̃t is a homotopy from f to a constant
map, so f is nullhomotopic.

Proposition 0.16 (Exercise 10, part one). A space X is contractible if and only if for every
space Y and every map f : Y → X, f is nullhomotopic.

Proof. Suppose that for every space Y , every map f : Y → X is nullhomotopic. In particular,
we can choose Y = X and f = IdX , so IdX is nullhomotopic, so X is contractible.

Now suppose that X is contractible. Let Y be a space and f : Y → X a map. Let
ht : X → X be a homotopy with h0 = IdX and h1(x) = x0. Then h̃t = htf : Y → X satsifies

h̃0 = IdX f = f and h̃1(x) = h1f(x) = x0, which is constant. Thus h̃t is a homotopy from f
to a constant map, so f is nullhomotopic.

The next lemma is quite trivial, but removes any doubt.

Lemma 0.17 (for Exercise 13). Let f : X → Y and g : Y → Z be functions, and let A ⊂ X.
Then

(g ◦ f)|A = g ◦ (f |A)

Proof. Let ιA : A ↪→ X be the inclusion. Then f |A = f ◦ ιA and (g ◦ f)|A = (g ◦ f) ◦ ιA, so
by associtivity of function composition,

(g ◦ f)|A = (g ◦ f) ◦ ιA = g ◦ (f ◦ ιA) = g ◦ (f |A)
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Proposition 0.18 (Exercise 13). Let X be a space and A ⊂ X, and suppose r0t and r1t are
deformation retractions of X onto A. Then there is a “continuous family” rst such that rst
is a deformation retraction of X onto A for each s ∈ [0, 1]. The family is continuous in the
sense that the map X × I × I → X given by (x, s, t) 7→ rst (x) is continuous.

Proof. (Note: This proof is somewhere between incomplete and useless. Nevertheless, this
line of thinking seems profitable.) Because r0t and r1t are deformation retractions, we have

r00 = r10 = IdX r0t |A = r1t |A = IdA r01(X) = r11(X) = A

For s ∈ [0, 1], define hst = r0t(1−s) ◦ r1ts. This is well-defined because for s, t ∈ [0, 1], we have

t(1− s), ts ∈ [0, 1]. Then we check that

h0t = r0t ◦ r10 = r0t ◦ IdX = r0t
h1t = r00 ◦ r1t = IdX ◦r1t = r1t

So we can take rst = hst . Both of the following are compositions of continuous functions,

(x, s, t) 7→ (x, ts) 7→ r1ts(x)

(x, s, t) 7→ (x, t(1− s)) 7→ r0t(1−s)(x)

so the composition
(x, s, t) 7→ r0t(1−s) ◦ r1ts(x)

is also continuous. We check that each rts is a deformation retraction onto A.

rs0 = r00 ◦ r10 = IdX ◦ IdX = IdX

rst |A = (r0t(1−s) ◦ r1ts)|A = r0t(1−s) ◦
(
r1ts|A

)
= r0t(1−s) ◦ IdA = IdA ◦ IdA = IdA

However, we do not know that rs1(X) = A, so we can’t say that rst is a family of deformation
retractions.
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